ارائه یک پیش پردازشگر مکانی طیفی جدید برای بهبود تجزیه طیفی تصاویر ابرطیفی
Authors
abstract
: هدف از تجزیه طیفی تصاویر ابرطیفی، استخراج امضاهای طیفی عناصر خالص تشکیلدهنده پیکسل های صحنه و فراوانی آن هاست. بیشترِ الگوریتم های به کاررفته در فرآیند استخراج امضاهای طیفی، بدون آنکه ساختار و همبستگی مکانی پیکسل های تصویر را در نظر بگیرند، تنها به اطلاعات طیفی پیکسل های تصویر توجه کرده اند. به تازگی الگوریتم هایی پبادهسازی شده است که به کمک ترکیب اطلاعات مکانی و طیفی، فرآیند شناسایی عناصر خالص و تجزیه طیفی را بهبود میبخشند. در این مقاله، یک ماژول پیش پردازشگر جدید مکانی طیفی ارائه شده است؛ به طوری که پیکسل های نواحی مرزی به کمک نقشه کلاس به دستآمده از الگوریتم کلاسترینگ، بدون نظارت و پنجره همسایگی 8تایی، میان دو یا چند ناحیه کلاستر را شناسایی و این نواحی ناهمگن مکانی را حذف میکنند. سپس به کمک محاسبه وزن خلوص طیفی پیکسل های غیرِمرزی و آستانه گذاری، پیکسل های موجود در نواحی همگن مکانی و خالص طیفی را شناسایی می کنند تا طبقات استخراج عناصر خالص بعدی بتوانند با دقت و سرعت بیشتری، امضاهای طیفی را استخراج کنند. هدف ماژول مستقل پیشنهادی، کاهش خطای rmse تصویرِ بازسازی شده و مدت زمان پردازش لازم برای استخراج عناصر خالص و بهبود معیار جدیدی به نام بازده نسبت به دیگر طبقات پیشپردازشگر موجود بر روی تصاویر ابرطیفی واقعی است.
similar resources
ارائه یک پیشپردازشگر مکانیطیفی جدید برای بهبود تجزیه طیفی تصاویر ابرطیفی
: هدف از تجزیه طیفی تصاویر ابرطیفی، استخراج امضاهای طیفی عناصر خالص تشکیلدهنده پیکسلهای صحنه و فراوانی آنهاست. بیشترِ الگوریتمهای بهکاررفته در فرآیند استخراج امضاهای طیفی، بدون آنکه ساختار و همبستگی مکانی پیکسلهای تصویر را در نظر بگیرند، تنها به اطلاعات طیفی پیکسلهای تصویر توجه کردهاند. بهتازگی الگوریتمهایی پبادهسازی شده است که به کمک ترکیب اطلاعات مکانی و طیفی، فرآیند شناسایی عناصر خ...
full textبهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها
فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه بندی پوشش های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکا...
full textحسگری فشرده تصاویر ابرطیفی با دستهبندی طیفی و بازسازی با تنظیمکننده تغییرات کلی طیفی- مکانی
در این مقاله با توجه به همبستگی باندهای طیفی یک تصویر ابرطیفی، ابتدا این باندها را بر اساس ضرایب همبستگی دستهبندی میکنیم. سپس با استفاده از همبستگی مکانی بین پیکسلهای یک تصویر ابرطیفی و بهکارگیری دستهبندی مذکور، یک روش حسگری فشرده طیفی-مکانی را با دستهبندی طیفی برای تصاویر ابرطیفی پیشنهاد مینماییم. برای بازسازی این تصاویر، روش تنظیمکننده تغییرات کلی طیفی-مکانی پیشنهاد میشود که در آن عل...
full textانتخاب باندهای بهینه جهت بهبود جداسازی طیفی تصاویر ابرطیفی
مدل آنالیز ترکیب خطی به طور گستردهای برای برآورد سهم هر ماده خالص در اختلاط طیفی مورد استفاده قرار میگیرد. راهحل ریاضی مسئله ترکیب، حل مجموعهای از معادلات خطی با استفاده از روش کمترین مربعات میباشد. اما بیشترین منبع خطا در روشهای متداول آنالیز ترکیب طیفی ناشی از عدم امکان محاسبه تغییرات طیفی اعضای خالص در سیر زمان و مکان است. در این فرآیند از اعضای خالص ثابتی برای کل صحنه تصویربرداری استف...
full textتاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی
فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقهبندی پوششهای زمین و بررسی تغییرات آنها میباشد. با پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه بندی تصاویر ابرطیفی ایجاب میکند. در این تحقیق سعی میگردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...
full textجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
full textMy Resources
Save resource for easier access later
Journal title:
هوش محاسباتی در مهندسی برقجلد ۷، شماره ۳، صفحات ۹۷-۱۱۴
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023